
Transactional Cloud Applications Go with the (Data)Flow
Kyriakos Psarakis George Christodoulou Marios Fragkoulis Asterios Katsifodimos

{k.psarakis,g.c.christodoulou,m.fragkoulis,a.katsifodimos}@tudelft.nl
Delft University of Technology

ABSTRACT
Traditional monolithic applications are migrated to the cloud, typi-
cally using a microservice-like architecture. Although this migra-
tion leads to significant benefits such as scalability and development
agility, it also leaves behind the transactional guarantees that data-
base systems have provided to monolithic applications for decades.
In the cloud era, developers build transactional and fault-tolerant
distributed applications by explicitly programming transaction pro-
tocols at the application level.

In this paper, we argue that the principles behind the streaming
dataflow execution model and deterministic transactional protocols
provide a powerful and suitable substrate for executing transac-
tional cloud applications. To this end, we introduce Styx, a trans-
actional application runtime based on streaming dataflows that
enables an object-oriented programming model for scalable, fault-
tolerant cloud applications with serializable guarantees.

1 INTRODUCTION
During the last decades, enterprises have migrated applications
such as ordermanagement systems, banking systems, game-backend
services, and supply-chain management to the cloud. The transition
from monolithic applications is primarily performed by following
an architectural pattern that favors a stateless application layer
supported by a stateful database layer. All the stateless and stateful
components communicate with each other via REST calls or mes-
sage queues. Microservice architectures are well-known instances
of this pattern.

At first sight, microservices are an obvious candidate for re-
placing monolithic applications and migrating to the cloud. Mi-
croservices offer code modularity, scalability, and development
agility. However, microservices dismiss an important advantage
that monolithic applications enjoyed for almost five decades: state
management, failure management, and state consistency have been
the responsibility of database systems. Today’s microservice ar-
chitectures depart from these DBMS amenities by intermingling
state management, service messaging, and coordination with ap-
plication logic. From the database community’s point of view, the
microservice architectural pattern resembles the situation long
ago [27], when developers were implementing ad-hoc application-
level transactions to ensure database consistency. Worse, managing
communication and state in a distributed cloud environment in-
creases complexity.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

For instance, in a shopping cart application, to complete a check-
out, we first need to ensure enough stock of the selected products
and then receive the corresponding payment before shipping the
products. In the microservice paradigm, each service (Cart, Stock,
Payment) has its own API, database, and application logic and com-
municates with other services through API calls. The main issue
with microservices is that both atomicity (i.e., update stock and get
paid for an order or cancel both actions) and state consistency across
workflows (i.e., the stock counts should reflect the successfully paid
orders) have to be solved in application code.

Similarly, Function-as-a-Service (FaaS) embraces the same gen-
eral architecture pattern as microservices: stateless application,
external database, and communication via messages. An orches-
tration layer on top of FaaS enables the composition of complex
workflows to build service-oriented applications. However, orches-
trators [14–16] solve only part of the problem, namely the atomicity
of a workflow’s execution. Moreover, achieving atomicity typically
requires developers to handcraft compensating actions to roll back
changes correctly using the SAGA pattern [17]. To address these
concerns, a line of research [19, 38] proposes FaaS systems for
workflow orchestration with transactional guarantees at the ex-
pense of performance and high-level programming primitives. For
applications requiring low-latency transaction execution and state
consistency across services [21], important challenges remain open.

In this paper, we first identify the limitations and shortcomings
of microservice-like architectures for implementing transactional
applications and then motivate the need for dedicated runtimes in
order to support transactional cloud applications. We argue that to
remove transaction- and failure-handling code from the application
level, we need to address complex orchestration, service calls, and
state management in a holistic manner at the system level, i.e., via
a dedicated runtime. During the last years, we have been develop-
ing such a runtime for transactional applications called Styx [28].
Styx automatically partitions state, parallelizes function execution,
and enables arbitrary transactional workflows to be executed with
low latency. Most importantly, Styx’s programming model [29]
allows for application development that resembles a single-node
application/monolith while transparently handling the serializable
execution of massively parallel workflows in the cloud.

Our work is in line with recent research, such as Orleans [3],
DBOS [24], Hydroflow [9], and SSMSs [25]. Contrary to these sys-
tems, our work adopts the streaming dataflow execution model
while exposing an object-oriented/actor-like programming model
on top [29] and guarantees serializability across services. To sum-
marize, we make the following contributions:

• We analyze the shortcomings of modern cloud applications
by exemplifying issues with current architectures and re-
quirements for future systems.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, & Asterios Katsifodimos

Failure handling

Transaction support

Microservices Ideal RuntimeFaaSMonolith

App Logic

State management

App Logic App Logic App Logic

Orchestration

Messaging

Failure handling

State management

Scaling Scaling ScalingDeveloper involvement

Orchestration

Messaging

Failure handling

State management

Orchestration

Messaging

Failure handling

State management

Figure 1: In monolithic applications, developers focused on application logic while a transactional database handled state
management and failure recovery. In distributed cloud applications, development involves more challenges (e.g., failures,
exactly-once messaging, and orchestration for atomicity and scalability). The ideal runtime should offer the same state
consistency and ease of programming as monoliths, with improved scalability, without developer involvement.

• Weprovide arguments on the suitability of the stateful stream-
ing dataflow paradigm for transactional cloud applications.

• We introduce a novel approach that brings together ideas
from deterministic databases, dataflow systems, and server-
less architectures alongside preliminary experiment results.

• We blueprint our future research directions in the area of
transactional cloud application runtimes.

2 FROMMONOLITHS TO MICROSERVICES
As illustrated in Figure 1, developers in monolithic architectures
were primarily responsible for the application logic. At the same
time, with the adoption of microservices, they need to deal with
messaging and failures (Section 2.1), state management and orches-
tration (Section 2.2), and scaling techniques (Section 2.3). Interest-
ingly, in Figure 2, we observe that these aspects are not orthogonal.
The conversion to a partitioned, event-driven architecture (Fig-
ure 2b to Figure 2c) requires state migration, coordination, and
fault-tolerance.

Figure 2 depicts the process of breaking down a monolithic
application (Figure 2a) into three microservices, each with their
database (Figure 2b). In the microservice architecture, direct access
to a single database and DBMS-based transactions are no longer
possible. Instead, the microservices split functionality and maintain
their database. Each service’s database is partitioned to scale out,
as shown in (Figure 2c). REST API calls are also transformed into
messages that asynchronously trigger those calls.
Microservices Implement Dataflows. A critical observation is
that the architecture depicted in Figure 2c closely resembles a
streaming dataflow graph with the partitioned state co-located
with the application logic. While we elaborate on this in Section 3.2,
in short, this architectural pattern is the same pattern that is fol-
lowed by streaming dataflow systems such as Apache Flink [6] and
Spark Streaming [37].

2.1 Messaging, Idempotency & Consistency
Traditional monoliths achieved atomicity of workflow execution
(e.g., a shopping cart checkout) by combining the state mutations of

different subsystems (cart, payment, stock) in the same transaction.
If the transaction fails, the database rolls back to the previous state,
and the application retries to execute the checkout anew.
Idempotency in Services. To achieve the same effect, a stateful
service or function must be idempotent, meaning that calling the
service multiple times should have the same effect on the global
state of an application as calling it exactly once. Considering that
various issues can arise when two services communicate (such as
network failures, rescaling, or service restarts), currently ensur-
ing idempotency works as follows: the sender service generates
an idempotency-key1 that is persisted in the state of the sender,
right before the call is performed. Suppose the sender sends a mes-
sage twice (e.g., because of an intermittent network issue or a
failure). In that case, the idempotency-key has to be recognized
and safely ignored by the receiver service. It is important to note
here that idempotency cannot be achieved without persisting the
idempotency-key to durable storage (e.g., a database) in the same
local transaction as the one that mutates the state of the receiver. At
the moment, idempotency-keys are managed by the developers,
adding to the complexity of developing cloud applications.

2.2 Transactions & Orchestration
Serializability in Services. Multiple works advocate that seri-
alizable guarantees are preferred [8, 23]. This is also reflected in
the offered isolation levels of the post-NoSQL systems such as
Google’s Spanner [11] and, more recently, CockroachDB [35]: they
all provide serializability. Serializability has been highly important
in monolithic applications, but in distributed service deployments,
it is virtually impossible to reason about correctness in case of state
inconsistencies [23]. Transactional service architectures have to
deal with message delivery guarantees.
SAGAs and Two-Phase Commit. Popular solutions to this chal-
lenge, known for years, involve the Saga pattern and two-phase
commit protocols orchestrated by a transaction coordinator im-
plementing XA transactions [33]. However, both of them present

1https://datatracker.ietf.org/doc/html/draft-idempotency-header-00

https://datatracker.ietf.org/doc/html/draft-idempotency-header-00

Transactional Cloud Applications Go with the (Data)Flow CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Stock

Cart

DB

Stock

Payment

Cart
App

Stock Payment

DB

REST Call REST Call

App

DB

App

DB

Cart
App App

Message Broker / Persistent Queue

P0 P0

a) Monolith b) Microservice c) Partitioned, event-driven architecture

PaymentStockCart
App App App

Payment
App

P1 P1 P1

P0

Figure 2: Three-step process of converting a monolith to a scalable, low-latency service architecture.

significant drawbacks. Implementing the Saga pattern involvesman-
aging the execution of compensating actions to reverse the partial
state effects of a failed workflow while the offered consistency level
is eventual. Alternatively, 2PC protocols coupled with two-phase
locking provide atomicity and isolation at the expense of blocking
the progress of service orchestrations involved in a transaction.
We need a new way to architect cloud applications with support
for transactional workflows that span multiple components of an
application.
Orchestrators. Currently, several commercial orchestrators are
available for executing SAGAs. Those orchestrators ensure atom-
icity only: they make sure that a given sequence of service calls
eventually comes to completion. While we do see the value of or-
chestrators for analytics applications (e.g., as Apache Airflow [2],
AWS Step Functions [15]), orchestrators are not suitable for trans-
actional applications, as they are all oblivious of the state of the
functions/services that they are orchestrating.

2.3 Application (Re-)Scaling
Scaling microservices requires scaling the stateless business logic
and the state management system that serves the stateless part of an
application. Scaling stateless services is relatively straightforward:
one needs to rescale the application logic instance, assuming that
the database behind the stateless instance can handle the new load.
However, when optimizing for latency, the database is partitioned
and preferably co-located with the application logic. In that case,
rescaling an application becomes a hurdle: the database has to
migrate state and possibly keep replicas. Soon enough, application
developers re-implement some version of database state migration
and rescaling [30] protocol.

While current FaaS cloud offerings do allow for stateless func-
tions to scale on demand, they still provide no transaction man-
agement primitives that take into account service orchestrations
and state consistency issues during the rescaling process. An ideal
runtime should be able to perform the rescaling of applications
without forcing operations teams and developers to perform rescal-
ing by hand while keeping the state across services transactionally
consistent.

3 STREAMING DATAFLOWS TO THE RESCUE
In this section, we highlight the key aspects and advantages of
streaming dataflow systems design and argue that they can be

extended to encapsulate the primitives required for executing trans-
actional cloud applications consistently and efficiently. Moreover,
we argue that combining deterministic databases and dataflow sys-
tems can create a runtime that ensures atomicity, consistency, and
scalability. Finally, we show how deterministic databases can be
extended for SFaaS, where transaction boundaries are unknown,
unlike online transaction processing (OLTP).

3.1 Dataflows as an Architectural Abstraction
Stateful dataflows is the execution model implemented by virtu-
ally all modern stream processors [13]. Streaming systems owe
their wide adoption in the last decade to a set of key system de-
sign aspects: exactly-once processing, consistent fault tolerance,
co-location of state and compute, and data-parallel scale-out archi-
tecture. We elaborate on these characteristics below.
Exactly-once Processing.Message-delivery guarantees are fun-
damentally hard to deal with in the general case, with the root of
the problem being the well-known Byzantine Generals problem.
However, in the closed world of dataflow systems, exactly-once
processing is possible [5, 6]. In principle, to achieve exactly-once
processing, the processing layer records the outcome of each mes-
sage’s state effects, and the networking layer ensures the delivery
of messages in FIFO order, while the fault tolerance layer guar-
antees that no message that is already reflected in the state will
be processed again. Note that the guarantee of exactly-once pro-
cessing facilitates programming substantially. The APIs of popular
streaming dataflow systems, such as Apache Flink, require no error
management code (e.g., message retries or duplicate elimination
with idempotency-keys).
Fault Tolerance. Exactly-once processing extends to the system’s
fault tolerance approach. The two can be gracefully combined us-
ing Chandy-Lamport’s distributed snapshot protocol [7] adapted
for streaming systems [5, 31]. The approach involves periodically
circulating special messages called checkpoint markers into the
streaming dataflow system, instructing its operators to snapshot
their state. Because checkpoint markers coexist with common data-
related messages on the same channel, they enforce a global order
that creates a consistent cut of the system’s state. In case of a failure,
the system can automatically roll back to the latest checkpoint of its
distributed state and resume processing from that point, assuming
the input is delivered from a replayable source, such as Apache

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, & Asterios Katsifodimos

Kafka [20]. This fault tolerance approach ensures that the system’s
state remains consistent under failures.
Co-location of State with Compute. Streaming dataflow systems
have demonstrated their capacity to process millions of events per
second [6]. One main design decision that enables this level of
sustainable performance is that the system’s operators maintain
the state of their computations in their local memory space. The
state is periodically snapshotted to persistent storage, securing
the progress of continuous computations against failures. Notably,
this coarse-grained approach bears a low overhead to the system’s
regular operation.
Data-parallel Scale-out Architecture. Continuing from the pre-
vious point, the system’s architecture enables high-throughput at
scale. Each operator in the logical dataflow graph is instantiated
as several operator instances deployed in distributed nodes. Each
instance holds a partition of the operator’s state, enabling input
data to be distributed and processed across the instances in parallel.

3.2 Dataflows for Transactional Applications
The aforementioned advantages of streaming dataflow systems do
not apply to transactional cloud applications. To begin with, typ-
ical transactional workloads in the cloud manifest as workflows
of functions that arbitrarily call one another. This computation
pattern is markedly different from analytics functions that populate
the operators of streaming systems. Second, streaming dataflow
systems lack support for transactions as prescribed in the database
literature [27]. Finally, the development of workflows of functions
entails a programming model that can convey transactional se-
mantics, form workflows, and support custom business logic. This
programming model departs from the typical way of programming
stream-processing jobs as chained functional transformations.
Dataflows for Arbitrary-Workflow Execution. The prime use
case for dataflow systems nowadays is streaming analytics, which
typically involves executing a chain of standalone functions. By
comparison, transactional cloud applications involve arbitrarywork-
flows of functions calling each other. To enable the execution of
arbitrary workflows in a dataflow system, we connect operators
at the system level such that an operator can directly invoke a
computation in another operator. In addition, we allow such nested
computations to be executed in parallel. Finally, we devised an ap-
proach for identifying the transaction boundaries of a workflow,
which we briefly describe next.
Deterministic transactions. Deterministic transactional proto-
cols have two properties that make them coexist harmoniously with
dataflow systems. First, given a set of sequenced transactions, a de-
terministic database [1, 36] will end up in the same final state with
serializable guarantees despite node failures and possible concur-
rency issues. This property is essential because it allows a determin-
istic transactional protocol to align with a dataflow system without
changing the stream processor’s checkpointing mechanism.

Second, unlike 2PC, which requires rollbacks in case of failures,
deterministic database protocols [26, 36] are "forward-only": once
the locking order [36] or read/write set [26] of a batch of trans-
actions has been determined, the transactions will be executed
and reflected on the database state, without the need to rollback
changes. This alignment between deterministic databases and the

Function Executor

update_stock(i1)

 :{i1, …, in}

Write i1 Workerm

checkout(Item[] i, User u1)

Sequencer

Read i1

Partitioner

Worker2Worker1

Call async

Snapshot Store

Replayable Source

…

…
2

m

1

checkout(i1, u1)

update_credit(u1)

Figure 3: Stateful-Function execution in Styx.

dataflow execution model is the primary motivation to support a
deterministic transaction protocol on top of a dataflow system.

Still, supporting deterministic transactions in a streaming dataflow
system is not trivial and poses two main challenges that we address
in our prototype system presented in Section 4. The first challenge
is how to determine transaction boundaries. This is not required in
deterministic databases where each transaction is encapsulated in a
single-threaded function that can execute remote reads and writes
from other partitions [26, 36]. In SFaaS, however, arbitrary function
calls to remote partitions are common because they enable develop-
ers to take advantage of both the separation of concerns principle
that is widely applied in microservice architectures [21], as well
as code modularity. Therefore, to determine a transactional work-
flow’s boundaries, we introduce an accounting scheme for function
calls nested inside a workflow. The scheme, which also supports
calls to remote operators and cycles, signals the termination of a
workflow’s execution once all function calls complete.

The second challenge is deciding when to commit to durable
storage and reply to users. Traditionally, a transactional system can
respond to a client only when 𝑖) the requested transaction has been
committed to a persistent, durable state or 𝑖𝑖) the write-ahead log
is flushed and replicated. Within the scope of a dataflow system,
this would require completing a snapshot, leading to prohibitive
latency. However, a deterministic transactional protocol executes
an agreed-upon sequence of transactions among the workers; after
a failure, the system would run the same transactions with exactly
the same effects. This determinism allows for early commit replies:
the client can receive a reply before a persistent snapshot is stored.
Programming Models. Currently, dataflow systems are only pro-
grammable through functional-programming style dataflow APIs:
a given cloud application needs to be rewritten by developers to
match the event-driven dataflow paradigm. Although it is possible
to rewrite many applications in this paradigm, it takes a consider-
able amount of programmer training and effort to do so. Therefore,
we have introduced an object-oriented programming abstraction
that encapsulates functions into actor-like entities. We present the
programming model as a whole in Section 4.1. We argue that this

Transactional Cloud Applications Go with the (Data)Flow CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

0 500 1000 1500 2000 2500 3000 3500
Input Throughput (transactions/s)

102

103

104

105

La
te

nc
y

(m
s)

W=1 50p
W=1 99p

W=10 50p
W=10 99p

W=100 50p
W=100 99p

Figure 4: Median and 99p Latency against throughput using
the TPC-C workload on Styx with 1, 10, and 100 warehouses.

programming model is suitable for developing transactional cloud
applications like microservices.

4 THE STATEFLOW/STYX APPROACH
Styx [28] is a transactional distributed dataflow system that exe-
cutes workflows of stateful functions with serializable guarantees.
Styx adopts Stateflow [29] as a higher-level programming abstrac-
tion, enabling users to code in a pure object-oriented style without
state management or fault tolerance considerations. In this section,
we describe the programming model (Section 4.1) and underlying
system (Section 4.2).

4.1 Programming Model
The Stateflow/Styx framework provides developers with two levels
of abstraction: a high-level actor-like programming interface based
on Stateflow [29] and a lower-level dataflow API [28].
High-level. Users can code transactional cloud applications in
Python object-oriented code where an entity is an object with
a unique key and class functions that mutate the entity’s state
(similar to actor programming). Additionally, when an entity calls a
function of another entity, Stateflow automatically creates an edge
in the dataflow graph. We describe Stateflow’s workings and how
it uses continuation-passing style programming to transform calls
between different entities into a distributed dataflow graph in [29].
Low-level. Styx follows the operator API of dataflow systems
(e.g., Apache Flink [6]). In Styx, a streaming operator can hold
multiple entities based on a partitioning scheme, the functions that
act upon the operator as a whole (allowing for range queries), or
the entities themselves (point queries). To communicate across
operators, developers can call remote operator functions using
Styx’s API.

4.2 The Styx Runtime
Styx [28] (Figure 3) employs a typical worker/coordinator architec-
ture and is complemented by a messaging system, such as Apache
Kafka, that propagates input to Styx, including the replay of unpro-
cessed messages following a failure. The coordinator’s responsibil-
ities are to deploy a user-defined dataflow graph to the workers,
monitor the cluster’s health while collecting useful metrics, and
trigger the fault tolerance pipeline in case of failure.

2 4 6 8 10 12 14 16 24 32
Workers

50K

100K

150K

200K

Th
ro

ug
hp

ut
 (T

PS
)

0% 20% 50% 100%

Figure 5: Scalability of Styx on YCSB with varying percent-
ages of multi-partition transactions.

The workers are responsible for a subset of the dataflow graph’s
operator state partitions, which are 1-to-1 aligned with the par-
titions of the replayable input source, say Apache Kafka. First,
each worker ingests client requests through Kafka and sequences
them (Styx uses a non-replicated sequencer partitioned per worker).
Then, it receives a batch of transactions from the sequencer and
executes them as coroutines in a single CPU to increase efficiency.
To execute transactions in a deterministic fashion, Styx extends a
deterministic transactional protocol similar to Calvin [36] and Aria
[26]. Determinism is required by the dataflow snapshotting mecha-
nism to guarantee the same state mutations after a replay in case
of failure. Transactions are executed in parallel across workers, and
nested function calls are transparently scheduled for execution by
local or remote operators. Finally, Styx’s acknowledgment-sharing
scheme signals the end of a transaction’s execution.
Fault Tolerance. To recover from failures, Styx relies on a re-
playable input source to perform deterministic message replay
based on recorded offsets. This design ensures that the sequencer
will re-create the same transaction sequence post-recovery and
enables early replies (before the state commits to durable storage).
Finally, Styx utilizes a blob store to persist incremental snapshots
of worker states.

5 PRELIMINARY RESULTS
We conducted a series of preliminary experiments to evaluate the
performance of our proposed approach. Our initial results indicate
that our system can support large-scale cloud applications with
high performance and near-linear scalability.
TPC-C. One of the most popular transactional benchmarks target-
ing OLTP systems is TPC-C [22]. To use it in our evaluation, we had
to transform it into an event-driven microservice workload. Each
table is now a microservice (or entity), leading to 12 microservices
(9 for the tables, 2 to hold the transaction metadata, and 1 for the
customer index). In Figure 4, we showcase results while running
the NewOrder and Payment transactions with equal probability, a
varying amount of warehouses (1, 10, 100), and 100 Styx workers
(1 CPU/2GB RAM per worker). The rewrite required splitting the
NewOrder transaction into 20-50 function calls (one call for each
item in the NewOrder transaction) and the Payment transaction
into 8 function calls. TPC-C scales in size/partitions by increasing
the number of warehouses represented in the benchmark. While a
single warehouse represents a skewed workload (all transactions
will hit the same warehouse), increasing the number of warehouses

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, & Asterios Katsifodimos

decreases contention, allowing for higher throughput and lower
latency.

In Figure 4, we observe that Styx’s performance improves as
we increase the input throughput for different numbers of ware-
houses, reaching up to 3K TPS (or 180K tpmC) with sub-second
99th percentile latency (100 warehouses). The latency is measured
end-to-end (i.e., from the client and back), and the clients are in the
same cluster in our experiments.
Scalability. In this experiment, we test the scalability of Styx by
increasing the number of Styx workers (1 CPU each). Each worker
has a state of 1 million keys. We measure the maximum throughput
on YCSB [10]. The goal is to calculate the speedup of operations
as the input throughput and number of workers scale together. In
addition, we control the percentage of multi-partition transactions
in the workload, i.e., transactions that span across workers. In
Figure 5, we observe that Styx retains near-linear scalability in
all settings. Finally, Styx displays the expected behavior as multi-
partition transactions increase. The codebase and experiments of
Styx can be found here: https://github.com/delftdata/styx

6 RELATEDWORK
Our system shares motivation with projects such as Hydroflow [9]
and DBOS [24]. DBOS takes a DB-centric approach where func-
tions can be translated to stored procedures within a database (co-
location of state and processing) or in the server where the state
needs to be transferred, and workflows form a database transaction
with ACID guarantees. Hydroflow, at its present state, does not
support transactional end-to-end workflows and focuses primarily
on cloud-native stream processing for analytics. Cloudburst [34]
provides causal consistency guarantees within a single Directed
Acyclic Graph (DAG) workflow. Netherite [4] offers exactly-once
execution guarantees and a high-level programming model, though
it does not ensure transactional serializability across functions. Or-
leans [3] introduces virtual actors decoupling applications from
the underlying architecture but does not guarantee exactly-once
message delivery. Finally, transactional SFaaS paradigms with seri-
alizability guarantees (Beldi [38], Boki [19], and T-Statefun [12]) do
support transactional end-to-end workflows but suffer in perfor-
mance and fail to decouple the user code from their transactional
primitives.

7 THE ROAD AHEAD
Our work aims at simplifying the development of transactional
cloud applications by providing transactional support, scalability,
and fault tolerance. There are two important milestones on the road
to achieving this goal: i) make Styx serverless, i.e., scale up and
down to zero without any input from a cluster manager (note that
from a programmer’s perspective, the API is already serverless) and
ii) enable Styx to interact deterministically with external systems
(e.g., another microservice deployment).
Serverless Runtime. The first step towards making a dataflow
system serverless by scaling up and down is state migration, which
is thoroughly explored in both dataflow [18] and transactional
systems [30]. However, since Styx is a combination of both, it leads
to a fundamental challenge that none of the two breeds supports:

how to maintain transactional guarantees during state migration
in the presence of failures.
Support Non-Deterministic Operations. In principle, functions
may encapsulate logic that makes the outcome of their execution
non-deterministic. Examples of non-deterministic operations are
calls to external systems and the use of random number genera-
tors or time-related utilities. Styx, like state-of-the-art SFaaS sys-
tems [19, 38], currently supports deterministic functions. That said,
it is possible to embrace non-deterministic functions in Styx by
tracking, recording, and persisting non-deterministic logic con-
tained in them following the approach of Clonos [32].

ACKNOWLEDGMENTS
This publication is part of project number 19708 of the Vidi research
program, partly financed by the Dutch Research Council (NWO).

REFERENCES
[1] Daniel J Abadi and Jose M Faleiro. 2018. An overview of deterministic database

systems. Commun. ACM 61, 9 (2018), 78–88.
[2] Apache Airflow. 2015. https://airflow.apache.org/.
[3] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.

2014. Orleans: Distributed virtual actors for programmability and scalability.
MSRTR2014 41 (2014).

[4] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. 2022. Netherite: Efficient execution of serverless workflows. Proceedings of
the VLDB Endowment 15, 8 (2022), 1591–1604.

[5] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-
tributed stream processing. Proceedings of the VLDB Endowment 10, 12 (2017),
1718–1729.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[7] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems
(TOCS) 3, 1 (1985), 63–75.

[8] Chaoyi Cheng, Mingzhe Han, Nuo Xu, Spyros Blanas, Michael D Bond, and Yang
Wang. 2023. Developer’s Responsibility or Database’s Responsibility? Rethinking
Concurrency Control in Databases. In 13th Annual Conference on Innovative Data
Systems Research (CIDR’23). January 8-11, 2023, Amsterdam, The Netherlands.

[9] Alvin Cheung, Natacha Crooks, Joseph M Hellerstein, and Mae Milano. 2021.
New directions in cloud programming. In 11th Annual Conference on Innovative
Data Systems Research (CIDR ’21), January 10-13, 2021, Chaminade, USA.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[11] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[12] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2022. Transactions across serverless functions leveraging stateful dataflows.
Information Systems 108 (2022), 102015. https://doi.org/10.1016/j.is.2022.102015

[13] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2024. A survey on the evolution of stream processing systems. The VLDB Journal
33, 2 (2024), 507–541.

[14] Azure Durable Functions. 2018. https://learn.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-overview.

[15] AWS Step Functions. 2016. https://aws.amazon.com/step-functions/.
[16] Google Cloud Run functions. 2024. https://cloud.google.com/functions.
[17] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. ACM Sigmod Record 16,

3 (1987), 249–259.
[18] Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John

Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious state mi-
gration for distributed streaming dataflows. Proceedings of the VLDB Endowment
12, 9 (2019), 1002–1015.

[19] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles. 691–707.

https://github.com/delftdata/styx
https://airflow.apache.org/
https://doi.org/10.1016/j.is.2022.102015
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://aws.amazon.com/step-functions/
https://cloud.google.com/functions

Transactional Cloud Applications Go with the (Data)Flow CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

[20] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. Athens, Greece,
1–7.

[21] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data management in microservices: state of the prac-
tice, challenges, and research directions. Proc. VLDB Endow. 14, 13 (Sept. 2021),
3348–3361. https://doi.org/10.14778/3484224.3484232

[22] Scott T Leutenegger and Daniel Dias. 1993. A modeling study of the TPC-C
benchmark. ACM Sigmod Record 22, 2 (1993), 22–31.

[23] Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe, Christos
Kozyrakis, Michael Stonebraker, Lalith Suresh, and Matei Zaharia. 2023. Trans-
actions Make Debugging Easy. In 13th Annual Conference on Innovative Data
Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The Netherlands.

[24] Qian Li, Peter Kraft, Kostis Kaffes, Athinagoras Skiadopoulos, Deeptaanshu
Kumar, Jason Li, Michael J Cafarella, Goetz Graefe, Jeremy Kepner, Christos
Kozyrakis, et al. 2022. A Progress Report on DBOS: A Database-oriented Operat-
ing System.. In CIDR.

[25] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden.
2024. Serverless State Management Systems.. In CIDR.

[26] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proc. VLDB Endow. (2020).

[27] Christos H Papadimitriou. 1979. The serializability of concurrent database up-
dates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.

[28] Kyriakos Psarakis, George Siachamis, George Christodoulou, Marios Fragkoulis,
and Asterios Katsifodimos. 2024. Styx: Transactional Stateful Functions on
Streaming Dataflows. arXiv:2312.06893 [cs.DC] https://arxiv.org/abs/2312.06893

[29] Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi, and
Asterios Katsifodimos. 2024. Stateful entities: object-oriented cloud applications
as distributed dataflows. EDBT (2024).

[30] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-grained adaptive partitioning for
general database schemas. Proceedings of the VLDB Endowment 10, 4 (2016),
445–456.

[31] George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris
Carbone, and Asterios Katsifodimos. 2024. CheckMate: Evaluating Checkpointing
Protocols for Streaming Dataflows. In 2024 IEEE 40th International Conference on
Data Engineering (ICDE). 4030–4043. https://doi.org/10.1109/ICDE60146.2024.
00309

[32] Pedro F Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodi-
mos. 2021. Clonos: Consistent causal recovery for highly-available streaming
dataflows. In Proceedings of the 2021 International Conference on Management of
Data. 1637–1650.

[33] CAE Specification. 1991. Distributed Transaction Processing: the XA Specification.
X/Open.

[34] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proceedings of the VLDB Endowment 13, 11 (2020).

[35] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 1493–1509.

[36] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for
partitioned database systems. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[37] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013. 423–438.

[38] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
1187–1204.

https://doi.org/10.14778/3484224.3484232
https://arxiv.org/abs/2312.06893
https://arxiv.org/abs/2312.06893
https://doi.org/10.1109/ICDE60146.2024.00309
https://doi.org/10.1109/ICDE60146.2024.00309
https://doi.org/10.1145/2213836.2213838

	Abstract
	1 Introduction
	2 From Monoliths to Microservices
	2.1 Messaging, Idempotency & Consistency
	2.2 Transactions & Orchestration
	2.3 Application (Re-)Scaling

	3 Streaming Dataflows to the Rescue
	3.1 Dataflows as an Architectural Abstraction
	3.2 Dataflows for Transactional Applications

	4 The Stateflow/Styx Approach
	4.1 Programming Model
	4.2 The Styx Runtime

	5 Preliminary Results
	6 Related Work
	7 The Road Ahead
	Acknowledgments
	References

